MixAll: Clustering Heterogenous data with Missing Values

نویسنده

  • Serge Iovleff
چکیده

The Clustering project is a part of the STK++ library (Iovleff 2012) that can be accessed from R (R Development Core Team 2013) using the MixAll package. It is possible to cluster Gaussian, gamma, categorical, Poisson, kernel mixture models or a combination of these models in case of heterogeneous data. Moreover, if there is missing values in the original data set, these missing values will be imputed during the estimation process. These imputations can be biased estimators or Monte-Carlo estimators of the Maximum A Posteriori (MAP) values depending of the algorithm used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MixAll: Clustering Mixed data with Missing Values

The Clustering project is a part of the STK++ library (Iovleff 2012) that can be accessed from R (R Development Core Team 2013) using the MixAll package. It is possible to cluster Gaussian, gamma, categorical, Poisson, kernel mixture models or a combination of these models in case of mixed data. Moreover, if there is missing values in the original data set, these missing values will be imputed ...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Fuzzy K-means clustering with missing values

Fuzzy K-means clustering algorithm is a popular approach for exploring the structure of a set of patterns, especially when the clusters are overlapping or fuzzy. However, the fuzzy K-means clustering algorithm cannot be applied when the real-life data contain missing values. In many cases, the number of patterns with missing values is so large that if these patterns are removed, then sufficient...

متن کامل

Missing value estimation methods for DNA microarrays

MOTIVATION Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clustering are not robust to missing data, and may lose effectiveness even with a few missing values....

متن کامل

Clustering with Missing Values: No Imputation Required

Clustering algorithms can identify groups in large data sets, such as star catalogs and hyperspectral images. In general, clustering methods cannot analyze items that have missing data values. Common solutions either fill in the missing values (imputation) or ignore the missing data (marginalization). Imputed values are treated as just as reliable as the truly observed data, but they are only a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015